My professional profile on Linkedin

View James Alexander's profile on LinkedIn

Where my visitors are


Materials Science and Engineering, Durable Development, Recycling..

Custom Search

Blog List-Free Science and Engineering Information Resources cf also Side and Bottom menu bars

Scientific Reports - science feeds

Physical sciences : subject feeds

Materials science : subject feeds

Friday, 11 November 2016

Optimizing deoxidation and desuIphurization during vacuum induction melting of alloy 718 is now online and free to members of IOM3.

My seminal paper:

Optimizing deoxidation and desuIphurization during vacuum induction melting of alloy 718, J. Alexander,

is an indispensible reference of fundamental importance for the very highest quality (and not, mentioned higher productivity) manufacturing by Vacuum Induction Melting (VIM)  of a large family of alloys,(high intergrity materials such as aero-engine quality Nickel based superalloys (and similar materials). My paper was first briefly reported at a Superalloy meeting in London UK (1982) then fully published in 1984-85, in the, then new, journal, Materials Science and Technology (IOM3, UK).

This work has now been made available, online, by the UK Institute of Minerals,Mining and Materials (IOM3) and their publisher (Taylor and Francis) UK. As mentionned this work is now freely available to members of IOM3 via their website

This work was carried out while I, the author, worked at Imphy SA, now APERAM, in France (Burgandy Region, Department 58, La Nièvre).

My role was absolutely indispensible in the acceptance of the project  by our steelworks  and chemical analysis lab. major developper in response to  GE-SNECMA's aero-engine main shaft requirements obtaining adheshion of both Steelworks and Chemistry Lab (90 or so Chem Elements to be analysed in order to satisfy the main client GE-SNECMA consortium for the above work to begin. (In fact I was able to reduce the trace element spec to a few known and easy to analyse chem. elements.) When trials began I alone carried out the adjustments required to suceed and be peblished, while others doubted.  This work proved that recycled materials can prove equally acceptable as so called "virgin raw material" until then the only acceptable choice to meet the Aeronautics Authoritities Safety specifications and regulations. (Improved economics and sustainability of strategic materials.

 I remain available to discuss and assist companies with such improvements if required. Most of this work has been adopted in regular production.

James Alexander is a Free-Lance Consultant and Translator (Bilingual French-English) 
Specialialities-process metallurgy, technology transfer (Japan-Invar for Liquid Gas Transport & India-Ministry of Defense India MIDHANI project, Hyderabad,India.

To cite this article: J. Alexander (1985) Optimizing deoxidation and desulphurization during vacuum induction melting of alloy 718, Materials Science and Technology, 1:2, 167-170, DOI: 10.1179/mst.1985.1.2.167 To link to this article:

Other Citations:

Sulphur Control in Nickel-Based Superalloy Production Dipl.-Ing. J. Morscheiser1 , Dipl.-Ing. L. Thönnessen2 , Prof. Dr.-Ing. B. Friedrich1 1 IME Process Metallurgy and Metal Recycling, RWTH Aachen University Intzestraße 3 52056 Aachen NB The date of my work is incorrectly referrences as 1995 (ie ten years late!!!)

((ALEXANDER, J.: Optimizing deoxidation and desulphurization during vacuum induction melting of alloy 718, in Materials Science and Technology, Vol. 1, 1995,(should be 1985) p. 167-170

and correctly cited as one would expect by Prof A.Mitchell  renowened also as a first class consultant

THE MAGNESIUM PROBLEM IN SUPERALLOYS A. Mitchell, M. Hilbom, E. Samuelsson and A. Kanagawa Dept. of Metals and Materials Engineering The University of British Columbia Vancouver, B.C., Canada, V6T lW5

4. J. Alexander: Material Science and Technology, Feb. 1985, V.l, pp. 167- 170.  

No comments:

High Purity Cr sources for Superalloys

Energy for th Future:Phil.Trans.A-Vol. 365, N° 1853 / April 15, 2007, curtesy The Royal Soc. London

Engineered foams and porous materials: Phil Trans A. Vol 364, N° 1838 / 06 curtesy_The R Soc. Lond