Pages

Contributors

My professional profile on Linkedin

View James Alexander's profile on LinkedIn

Where my visitors are

A380's TRENT XWB

Materials Science and Engineering, Durable Development, Recycling..

Custom Search

Blog List-Free Science and Engineering Information Resources cf also Side and Bottom menu bars

Scientific Reports - nature.com science feeds

Physical sciences : nature.com subject feeds

Materials science : nature.com subject feeds

Friday, 8 April 2016

Ultrathin Photovoltaics Produced at MIT story brought by IHS Engineering360



MIT researchers place a lightweight solar cell on top of a soap bubble. Image source: Joel Jean and Anna Osherov.


Incredible Technological feat from MIT!





Ultrathin Photovoltaics Produced at MIT | IHS Engineering360





"Researchers at MIT have now demonstrated the thinnest, lightest solar cells ever produced. Though it may take years to develop into a commercial product, the laboratory proof-of-concept shows a new approach to making solar cells that could help power the next generation of portable electronic devices.

The new process is described in a paper by MIT professor Vladimir Bulović, research scientist Annie Wang, and doctoral student Joel Jean, in the journal Organic Electronics.
Bulović, MIT’s associate dean for innovation and the Fariborz Maseeh (1990) Professor of Emerging Technology, says the key to the new approach is to make the solar cell, the substrate that supports it, and a protective overcoating to shield it from the environment, all in one process. The substrate is made in place and never needs to be handled, cleaned, or removed from the vacuum during fabrication, thus minimizing exposure to dust or other contaminants that could degrade the cell’s performance.
“The innovative step is the realization that you can grow the substrate at the same time as you grow the device,” Bulović says.
In this initial proof-of-concept experiment, the team used a common flexible polymer called parylene as both the substrate and the overcoating, and an organic material called DBP as the primary light-absorbing layer. Parylene is a commercially available plastic coating used widely to protect implanted biomedical devices and printed circuit boards from environmental damage. The entire process takes place in a vacuum chamber at room temperature and without the use of any solvents, unlike conventional solar-cell manufacturing, which requires high temperatures and harsh chemicals. In this case, both the substrate and the solar cell are “grown” using established vapor deposition techniques.""
REF: February 25, 2016

High Purity Cr sources for Superalloys

Energy for th Future:Phil.Trans.A-Vol. 365, N° 1853 / April 15, 2007, curtesy The Royal Soc. London

Engineered foams and porous materials: Phil Trans A. Vol 364, N° 1838 / 06 curtesy_The R Soc. Lond