My professional profile on Linkedin

View James Alexander's profile on LinkedIn

Where my visitors are


Materials Science and Engineering, Durable Development, Recycling..

Custom Search

Blog List-Free Science and Engineering Information Resources cf also Side and Bottom menu bars

Scientific Reports - science feeds

Physical sciences : subject feeds

Materials science : subject feeds

Friday, 8 September 2017

Optimizing deoxidation and desuIphurization during vacuum induction melting of alloy 718 is now online and free to members of IOM3.

My seminal paper:

Optimizing deoxidation and desuIphurization during vacuum induction melting of alloy 718, J. Alexander,

is an indispensible reference of fundamental importance for the very highest quality (and not, mentioned higher productivity) manufacturing by Vacuum Induction Melting (VIM)  of a large family of alloys,(high intergrity materials such as aero-engine quality Nickel based superalloys (and similar materials). My paper was first briefly reported at a Superalloy meeting in London UK (1982) then fully published in 1984-85, in the, then new, journal, Materials Science and Technology (IOM3, UK).

This work has now been made available, online, by the UK Institute of Minerals,Mining and Materials (IOM3) and their publisher (Taylor and Francis) UK. As mentionned this work is now freely available to members of IOM3 via their website

This work was carried out while I, the author, worked at Imphy SA, now APERAM, in France (Burgandy Region, Department 58, La Nièvre).

My role was absolutely indispensible in the acceptance of the project  by our steelworks  and chemical analysis lab. major developper in response to  GE-SNECMA's aero-engine main shaft requirements obtaining adheshion of both Steelworks and Chemistry Lab (90 or so Chem Elements to be analysed in order to satisfy the main client GE-SNECMA consortium for the above work to begin. (In fact I was able to reduce the trace element spec to a few known and easy to analyse chem. elements in our inhouse Chem Lab) When trials began persisted and alone carried out the adjustments required to suceed and be published, while others doubted the feasability. In fact I finished these adjustments alone throughout the night. At about 5am in the morning, the laboratory was able to announce to me, virtually zero sulphur in the melt.  This work proved that recycled materials can prove equally acceptable as so called "virgin raw material" until then the only acceptable raw materials choice to meet the Aeronautics Authoritities stringent Safety Specifications and Regulations. And of course various improved economics and sustainability of strategic materials. Good and highly reliable "aeronautic quality scrap material" was resourced via Ireland Alloys in Scotland (with thanks).

Rapidly these procedures were adopted in a wide range of Inconel & Udimet type superalloys.

The overall cleanness of our alloys was enhanced.

I remain available to discuss and assist companies with such improvements if required. Most of this work has been adopted in regular production. Also these VIM procedures greatly helped the desulphurization ability of ESR-Electro Slag Remelting (Nothing like taking the sulphur our before ESR! ) Other productivity improvements were achieve.

James Alexander is a Free-Lance Consultant and Translator (Bilingual French-English) 
Specialialities-process metallurgy, technology transfer (Japan-Invar for Liquid Gas Transport & India-Ministry of Defense India MIDHANI project, Hyderabad,India.

To cite this article: J. Alexander (1985) Optimizing deoxidation and desulphurization during vacuum induction melting of alloy 718, Materials Science and Technology, 1:2, 167-170, DOI: 10.1179/mst.1985.1.2.167 To link to this article:

Other Citations:

Sulphur Control in Nickel-Based Superalloy Production Dipl.-Ing. J. Morscheiser1 , Dipl.-Ing. L. Thönnessen2 , Prof. Dr.-Ing. B. Friedrich1 1 IME Process Metallurgy and Metal Recycling, RWTH Aachen University Intzestraße 3 52056 Aachen NB The date of my work is incorrectly referrences as 1995 (ie ten years late!!!)

((ALEXANDER, J.: Optimizing deoxidation and desulphurization during vacuum induction melting of alloy 718, in Materials Science and Technology, Vol. 1, 1995,(should be 1985) p. 167-170

and correctly cited as one would expect by Prof A.Mitchell  renowened also as a first class consultant

THE MAGNESIUM PROBLEM IN SUPERALLOYS A. Mitchell, M. Hilbom, E. Samuelsson and A. Kanagawa Dept. of Metals and Materials Engineering The University of British Columbia Vancouver, B.C., Canada, V6T lW5

4. J. Alexander: Material Science and Technology, Feb. 1985, V.l, pp. 167- 170.  

Monday, 12 June 2017

Materials Science and Engineering Initiative focuses on sustainability

Materials Science and Engineering Initiative focuses on sustainability: "Materials Science and Engineering Initiative focses on sustainability"

"UC Santa Cruz researchers are developing new materials for a wide range of devices and products, from solar cells to surfboards

"It sounds like something out of science fiction, but a magnetic skyrmion is a real thing, and skyrmion-based devices might someday dominate data storage and processing, combining high speed, low energy consumption, and small size.
UC Santa Cruz physicist David Lederman studies the materials needed to create and control skrymions, which are very stable, very small magnetic structures. He leads a team of scientists and engineers at three UC campuses and a national laboratory who are working to understand the fundamental physics of these structures while assessing the feasibility of using them in data storage and processing devices."
"Like the field of materials science in general, the project straddles the divide between basic and applied research. "There's a lot of fundamental science involved, but at the end of the day, you want to come up with something useful," Lederman said.
Materials science is also inherently interdisciplinary, he said, involving chemistry, physics, engineering, and even biology. Lederman directs the Materials Science and Engineering Initiative at UC Santa Cruz, which includes faculty in several departments in the Division of Physical and Biological Sciences and the Baskin School of Engineering."
'via Blog this'

Monday, 16 January 2017

Raising the standards_How nickel-containing stainless steel make food safer

How nickel-containing stainless steel make food safer

The FDA considered this Listeriosis outbreak to be “yet another reason to fully implement the Food Safety Modernization Act” (FSMA) which was signed into law on January 4, 2011. The Act aims to ensure the US food supply is safe by shifting the focus of federal regulators from responding to contamination to preventing it, and provides the FDA with the authority to require preventive controls across the food supply chain; perform inspections and ensure compliance; recall contaminated food and ensure imported foods meet US standards.

Are these standards met in the EU.? 
The arguements are well illustrated in the Ni-Institute News Letter under the following 3 paragraphe headed as follows:

The full letter may be consulted at the link beleow. 

Raising the standards:

"A fifth of all nickel production is destined for food contact materials, primarily stainless steel, which because of its outstanding properties meets the stringent requirements of the industry. To ensure that food is completely safe, standards and guidelines for equipment must be adhered to. Yet there are many different standards, by different organizations, in different countries, with different approaches, even if they have the same ultimate goal. Some standards are mandatory, others are voluntary, and they are regularly updated to address new concerns."

-Need for standards Explained.

-A stainless steel for every application.

-Not just clean and shiny.

'via Blog this'

Thursday, 1 December 2016

Loads of free peer reviewed material Sage Publications, all disciplines,NB. Management & Materials Related: Quick Browse Sage's extensive library,

LINK to Sage Publications: 

Sages offer is so exhaustive that no more needs to be said, best to browse individually or in groups.

I opened my alert to a couple of management journals. 

After downloading a few peer reviewed papers I then felt drawn to browse the extensive catelogue of online materials, well organized alphabetically and selected a few more Journals in some of my technical interests...

Typically Materials Science and Engineering and Similar Jornals Engineering Environment etc

Cheers to SAGE and I hope my readers will make good use of these materials...."good and peaceful use in a true "wedge-a-war" sense so much required in our time.


Saturday, 12 November 2016

Celox Oxygen Activity probe

Readers of my recent post:

"Optimizing deoxidation and desuIphurization during vacuum induction melting of alloy 718"

full paper free to members of IOM3,UK is now online and freely available to members of IOM3.

Readers new to Superalloys and steel cleanness via Sulphur & Oxygen removal may also wish to read about Oxygen Activity Mesurement probes. The one I am particularily familiar with is the Celox Oxygen Activity probe. In many ways our/my introduction and systematic use of the Celox probe in the production process, undoubtably added credibility to the companies product,

The Celox Oxygen Activity Measurement Probe

Comments or requests for information on Oxygen Activity Measurement  and related are most welcome.

Cheers & Enjoy

High Purity Cr sources for Superalloys

Energy for th Future:Phil.Trans.A-Vol. 365, N° 1853 / April 15, 2007, curtesy The Royal Soc. London

Engineered foams and porous materials: Phil Trans A. Vol 364, N° 1838 / 06 curtesy_The R Soc. Lond